Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Food Chem ; 409: 135289, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36586260

ABSTRACT

Different xanthan gum (XG) concentrations on the rheological/texture properties of Pickering emulsion (PE) gel stabilized by tea protein/xanthan gum (TP/XG) were studied to achieve an ink feasible for 3D printing. Afterwards, the effects of 3D printing and digestion process on the viability of probiotics were studied when encapsulated in the PE gel. Results indicated that gel strength, stability, storage modulus (G') and loss modulus (G″) increased as XG concentration increased. Nozzle diameter and printing temperature of 45 and 55℃ had no significant effect on probiotic's viability, but printing temperature of 65℃ reduced viable probiotics from 8.07 to 6.59 log CFU/g. No significant change of probiotics viability in 3D printed samples was observed during 11-day storage at 4℃. PE gel encapsulated probiotic's viability was significantly improved under heat treatment and simulated gastrointestinal environment. This study gives insights on the production of 3D printed foods using PE gel incorporating probiotics.


Subject(s)
Polysaccharides, Bacterial , Printing, Three-Dimensional , Emulsions , Tea , Rheology
2.
Int J Food Microbiol ; 382: 109929, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36116390

ABSTRACT

The primary seafood-borne pathogen Vibrio parahaemolyticus seriously threats the health of consumers preferring raw-fish products, becoming a global concern in food safety. In the present study, we found ferrous sulfate (FeSO4), a nutritional iron supplement, could efficiently induce the death of V. parahaemolyticus. Further, the bactericidal mechanisms of FeSO4 were explored. With a fluorescent probe of Fe2+, a significant influx of Fe2+ was determined in V. parahaemolyticus exposed to FeSO4, and the addition of an intracellular Fe2+ chelator was able to block the cell death. This suggested that cell death in V. parahaemolyticus induced by FeSO4 was dependent on the influx of Fe2+. It was intriguing that we did not observe the eruption of reactive oxygen species (ROS) and lipid hydroperoxides by Fe2+, but the application of liproxstatin-1 (a ferroptosis inhibitor) significantly modified the occurrence of cell death in V. parahaemolyticus. These results suggested FeSO4-induced cell death in V. parahaemolyticus be a ferroptosis differing from that in mammalian cells. Through transcriptome analysis, it was discovered that the exposure of FeSO4 disturbed considerable amounts of gene expression in V. parahaemolyticus including those involved in protein metabolism, amide biosynthesis, two-component system, amino acid degradation, carbon metabolism, citrate cycle, pyruvate metabolism, oxidative phosphorylation, and so on. These data suggested that FeSO4 was a pleiotropic antimicrobial agent against V. parahaemolyticus. Notably, FeSO4 was able to eliminate V. parahaemolyticus in salmon sashimi as well, without affecting the color, texture, shearing force, and sensory characteristics of salmon sashimi. Taken together, our results deciphered a unique ferroptosis in V. parahaemolyticus by FeSO4, and highlighted its potential in raw-fish products to control V. parahaemolyticus.


Subject(s)
Vibrio parahaemolyticus , Amides/analysis , Amino Acids , Animals , Carbon , Chelating Agents/analysis , Citrates , Ferrous Compounds , Fluorescent Dyes/analysis , Food Contamination/analysis , Iron , Lipids/analysis , Mammals , Pyruvates/analysis , Reactive Oxygen Species/analysis , Salmon , Seafood/analysis , Vibrio parahaemolyticus/genetics
3.
J Agric Food Chem ; 69(45): 13608-13617, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34747604

ABSTRACT

Aspergillus flavus is saprophytic soil fungus that contaminates seed crops with the carcinogenic secondary metabolite aflatoxin, posing a significant threat to humans and animals. Ferrous sulfate is a common iron supplement that is used to the treatment of iron-deficiency anemia. Here, we identified an unexpected inhibitory role of ferrous sulfate on A. flavus. With specific fluorescent dyes, we detected several conidial ferroptosis hallmarks in conidia under the treatment of 1 mM Fe2+, including nonapoptosis necrosis, iron-dependent, lipid peroxide accumulation, and ROS burst. However, unlike traditional ferroptosis in mammals, Fe2+ triggered conidial ferroptosis in A. flavus was regulated by NADPH oxidase (NOXs) activation instead of Fenton reaction. Transcriptomic and some other bioinformatics analyses showed that NoxA in A. flavus might be a potential target of Fe2+, and thus led to the occurrence of conidial ferroptosis. Furthermore, noxA deletion mutant was constructed, and both ROS generation and conidial ferroptosis in ΔnoxA was reduced when exposed to Fe2+. Taken together, our study revealed an exogenous Fe2+-triggered conidial ferroptosis pathway mediated by NoxA of A. flavus, which greatly contributes to the development of an alternative strategy to control this pathogen.


Subject(s)
Aflatoxins , Ferroptosis , Animals , Aspergillus flavus/genetics , Humans , Iron , NADPH Oxidases , Spores, Fungal
4.
J Agric Food Chem ; 69(39): 11733-11741, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34558287

ABSTRACT

Staphylococcus aureus can cause many diseases and has a strong tendency to develop resistance to multiple antibiotics. In this study, benzyl isothiocyanate (BITC) was shown to have an excellent inhibitory effect on S. aureus ATCC25923 and methicillin-resistant S. aureus strains, with a minimum inhibitory concentration of 10 µg/mL. Under a scanning electron microscope, shrinkage and lysis of the cellular envelope were observed when exposed to BITC, and a bactericidal mode of BITC against S. aureus was further confirmed through flow cytometry. Additionally, the RNA profiles of S. aureus cells exposed to BITC indicated a violent transcriptional response to BITC. Through Kyoto Encyclopedia of Genes and Genomes analysis, it was found that many pathways involving bacterial survival were significantly affected, such as RNA degradation, oxidative phosphorylation, arginine biosynthesis, and so forth. A gene co-expression network was constructed using weighted gene co-expression network analysis, and six biologically meaningful co-expression modules and 125 hub genes were identified from the network. Among them, EfeB, GroES, SmpB, and Lsp were possibly targeted by BITC, leading to the death of S. aureus. Our results indicated a great potential of BITC to be applied in food safety and pharmaceuticals, highlighting its multitarget-directed bactericidal effects on S. aureus.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Gene Expression Profiling , Isothiocyanates , Methicillin-Resistant Staphylococcus aureus/genetics , Plant Extracts , Staphylococcus aureus/genetics
5.
PLoS One ; 11(5): e0155647, 2016.
Article in English | MEDLINE | ID: mdl-27196096

ABSTRACT

Aspergillus flavus is a well-known pathogenic fungus for both crops and human beings. The acquisition of resistance to azoles by A. flavus is leading to more failures occurring in the prevention of infection by A. flavus. In this study, we found that thymol, one of the major chemical constituents of the essential oil of Monarda punctate, had efficient fungicidal activity against A. flavus and led to sporular lysis. Further studies indicated that thymol treatment induced the generation of both ROS and NO in spores, whereas NO accumulation was far later than ROS accumulation in response to thymol. By blocking ROS production with the inhibitors of NADPH oxidase, NO generation was also significantly inhibited in the presence of thymol, which indicated that ROS induced NO generation in A. flavus in response to thymol treatment. Moreover, the removal of either ROS or NO attenuated lysis and death of spores exposed to thymol. The addition of SNP (exogenous NO donor) eliminated the protective effects of the inhibitors of NADPH oxidase on thymol-induced lysis and death of spores. Taken together, it could be concluded that ROS is involved in spore death induced by thymol via the induction of NO.


Subject(s)
Aspergillus flavus/drug effects , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Spores, Fungal/drug effects , Thymol/pharmacology , Antifungal Agents/pharmacology , Aspergillus flavus/metabolism , Biomass , Dose-Response Relationship, Drug , Microscopy, Electron, Scanning , NADPH Oxidases/antagonists & inhibitors , Oils, Volatile/pharmacology , Plant Oils/pharmacology , RNA, Messenger/metabolism
6.
PLoS One ; 9(10): e110901, 2014.
Article in English | MEDLINE | ID: mdl-25333984

ABSTRACT

Selenium (Se) is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS) burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO) in the root of Brassica rapa under Se(IV) stress. Se(IV)-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV)-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR)- and nitric oxide synthase (NOS)-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV)-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV)-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV) stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.


Subject(s)
Nitric Oxide/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Selenium/toxicity , Brassica rapa/drug effects , Brassica rapa/enzymology , Enzyme Inhibitors/pharmacology , NADPH Oxidases/metabolism , Nitrate Reductase/antagonists & inhibitors , Nitrate Reductase/metabolism , Nitric Oxide Synthase/metabolism , Plant Roots/drug effects , Plant Roots/growth & development
7.
PLoS One ; 9(10): e110904, 2014.
Article in English | MEDLINE | ID: mdl-25333279

ABSTRACT

Selenium (Se) has been becoming an emerging pollutant causing severe phytotoxicity, which the biochemical mechanism is rarely known. Although hydrogen sulfide (H2S) has been suggested as an important exogenous regulator modulating plant physiological adaptions in response to heavy metal stress, whether and how the endogenous H2S regulates Se-induce phytotoxicity remains unclear. In this work, a self-developed specific fluorescent probe (WSP-1) was applied to track endogenous H2S in situ in the roots of Brassica rapa under Se(IV) stress. Se(IV)-induced root growth stunt was closely correlated with the inhibition of endogenous H2S generation in root tips. Se(IV) stress dampened the expression of most LCD and DCD homologues in the roots of B. rapa. By using various specific fluorescent probes for bio-imaging root tips in situ, we found that the increase in endogenous H2S by the application of H2S donor NaHS could significantly alleviate Se(IV)-induced reactive oxygen species (ROS) over-accumulation, oxidative impairment, and cell death in root tips, which further resulted in the recovery of root growth under Se(IV) stress. However, dampening the endogenous H2S could block the alleviated effect of NaHS on Se(IV)-induced phytotoxicity. Finally, the increase in endogenous H2S resulted in the enhancement of glutathione (GSH) in Se(IV)-treated roots, which may share the similar molecular mechanism for the dominant role of H2S in removing ROS by activating GSH biosynthesis in mammals. Altogether, these data provide the first direct evidences confirming the pivotal role of endogenous H2S in modulating Se(IV)-induced phytotoxicity in roots.


Subject(s)
Brassica rapa/growth & development , Plant Roots/growth & development , Selenium/toxicity , Antioxidants/metabolism , Brassica rapa/drug effects , Glutathione/metabolism , Hydrogen Sulfide/metabolism , Plant Roots/drug effects , Reactive Oxygen Species/metabolism
8.
Int J Mol Sci ; 10(9): 4157-4167, 2009 Sep 23.
Article in English | MEDLINE | ID: mdl-19865537

ABSTRACT

Boiling water extracts of 66 selected Chinese medicinal herbs were screened for their anticyanobaterial activity against Microcystis aeruginosa by the soft-agar overlayer (SAO) method. Results indicated that extracts from 16 materials could inhibit the growth of this bacterial species. Among these anticyanobacterial samples, eight extracts showed low minimum inhibitory concentrations (MIC), including four extracts with MICs between 1 and 6 mg/mL, and four extracts with MICs < 1 mg/mL which could be considered useful to prevent the outbreak of cyanobacteria before the appearance of cyanobacterial blooms. Further study showed that three extracts with MIC values < 1 mg/mL induced intensive chlorophyll-a lysis within 7 days at the MIC. The results suggested that highly efficient anticyanobacterial compounds must be involved in the inhibitory activities. The final results indicated these three extracts (from Malaphis chinensis, Cynips gallae-tinctoriae and Fructus mume) had the potential to be developed as algicides due to their remarkably anticyanobacterial activities.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Microcystis/drug effects , Bacteriochlorophyll A/metabolism , Disk Diffusion Antimicrobial Tests , Microcystis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL